
net Documentation
Release 0.3.1

Alex Hatfield

Mar 23, 2019

Contents:

1 app-net 1
1.1 Basic Example . 1

2 Installation 3
2.1 Stable release . 3
2.2 From sources . 3

3 Usage 5
3.1 Core Concepts . 5
3.2 A Basic Example . 5

4 API Reference 7
4.1 Environment . 7
4.2 Decorators . 8
4.3 Functions . 9
4.4 Defaults . 10
4.5 Peer . 10

5 Contributing 13
5.1 Types of Contributions . 13
5.2 Get Started! . 14
5.3 Pull Request Guidelines . 15
5.4 Tips . 15
5.5 Deploying . 15

6 Indices and tables 17

i

ii

CHAPTER 1

app-net

Pure python peer-to-peer interfacing framework. Define functions that can be executed from within the running in-
stance of python, just like a normal function. Or execute the same function on a remote peer running either the same
application or a compatible function and return the result as though it was run locally.

Link to the Documentation.

1.1 Basic Example

Below is a basic example of defining an application that is running on 2 separate hosts independently. We will define a
simple function that will take a positional argument and keyword argument then multiplies them together and returns
the result.

First we will define our function

import net

@net.connect
def my_function(some_arg, some_kwarg=5):

return some_arg * some_kwarg

Now we can launch 2 instances of python. It can be either on the same or remote host, net handles this through peer
ids.

1

https://pypi.python.org/pypi/app-net
https://travis-ci.org/aldmbmtl/net
https://net.readthedocs.io/en/latest/?badge=latest
https://github.com/Naereen/StrapDown.js/blob/master/LICENSE
https://app-net.readthedocs.io/en/latest/?

net Documentation, Release 0.3.1

>>> import net
>>> # run this function locally on this instance of python
>>> my_function(5, some_kwarg=10)
50
>>> # get all peers on the network
>>> for peer_id in net.get_peers():
... # execute the same function but on other instances of python and return the
→˓results
... print(my_function(5, some_kwarg=10, peer=peer_id))
...
50

2 Chapter 1. app-net

CHAPTER 2

Installation

2.1 Stable release

To install net, run this command in your terminal:

$ pip install app-net

This is the preferred method to install net, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for net can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/aldmbmtl/net

Or download the tarball:

$ curl -OL https://github.com/aldmbmtl/net/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

3

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/aldmbmtl/net
https://github.com/aldmbmtl/net/tarball/master

net Documentation, Release 0.3.1

4 Chapter 2. Installation

CHAPTER 3

Usage

3.1 Core Concepts

app-net uses peer-to-peer socket servers to execute code both locally and remotely. The first thing to understand is the
difference between local and remote execution of a function.

3.1.1 Local

When you launch python and you execute a function, it will execute inside that instance, obviously. app-net requires
you the developer to define the peer id to execute the function on. If you don’t tell the function where to execute the
code, it will default to a normal pass-through. This makes development and testing easier. The response locally is
expected to match a remote peers response.

3.1.2 Remote

When you execute a function, you can tell it to connect to a different instance of python, execute the code, and return
the result through the socket response. The thing to understand is that a remote instance doesn’t need to be on another
host. Meaning, if you have 2 instances of python running app-net on the same host, they can communicate the same
way they would if they were on a different host.

3.2 A Basic Example

Each connected function is registered using the functions func.__module__ and func.__name__ attributes and
then encoded into base64 for easier transit between peers. This connection identifier is called a “tag”. So, when Peer1
wants to execute a function on Peer2, it will send a JSON request that has the args, kwargs and the tag. The tag is then
used to find the function in Peer2’s registry and then pass the args and kwargs to that function. If it succeeds, the result
is sent back to Peer1. If not, the traceback is captured and sent back and Peer1 will throw a matching error.

5

net Documentation, Release 0.3.1

We are going to write a very simple application that will multiply 2 values together. Then we will flag this function
as a “connect” function. Then we will launch 2 instances on our local host, and trigger execution calls between the
instances.

Firstly, we will define a our basic multiply function. Then we will flag it with the net.connect decorator. This
connect function will launch a net.Peer server and register our multiply_values function with it.

import net

application code
@net.connect()
def multiply_values(val1, val2):

return val1 * val2

>>> import net
>>>
>>> # get all net peers reachable on local host and the local area network.
>>> for peer_id in net.get_peers():
>>> #
>>> print(multiply_values(5, 10, peer=peer_id))
50
...

>>> import net
>>>
>>> # get all net peers reachable on local host and the local area network.
>>> for peer_id in net.get_peers():
>>> #
>>> print(multiply_values(5, 10, peer=peer_id))
50
...

6 Chapter 3. Usage

CHAPTER 4

API Reference

4.1 Environment

All of the following are environment variables that can be set to configure net. Each variable is prefixed with
“NET_{value}”.

4.1.1 Network Thread Limit

net.THREAD_LIMIT

Default: 5

For larger networks, you may want to increase the thread count. By default, this is set to 5. When scanning the network
for peers, the total number of hosts is load balanced between the thread count you provide in this variable.

4.1.2 Port Configuration

net.PORT_START

Default: 3010

This is the starting port that the peers will attempt to bind to.

net.PORT_RANGE

Default: 5

This is the range of ports that you want the port to try to bind to. If the default is 3010, net will scan 3010 - 3015 for a
port.

4.1.3 Peer Configuration

net.GROUP

7

net Documentation, Release 0.3.1

Default: None

You can group your peers together by defining the group it belongs to. This helps Peers find compatible peers or
collections.

net.IS_HUB

Default: False

If you have a single peer that should be the center of an application, you can identify it through this variable. When
you run net.info on a peer with this flag, it will return True in the hub field of the friendly_id.

4.1.4 Development Configuration

net.DEV

Default: None

This will activate the DEBUG level for the net logger. This helps a ton if you are having trouble tracking communica-
tion between peers.

4.2 Decorators

net.connect(tag=None)
Registers a function as a connection. This will be tagged and registered with the Peer server. The tag is a base64
encoded path to the function or can be manually tagged with the tag parameter. Tagging a named function allows
you to interconnect functions between code bases.

For example, a connected function with no tag is tied to the func.__module__ + func.__name__. This
means the peers will only know which functions are compatible based on the namespace staying the same.

app version 1 running on PeerA
app/
module/

function

app version 2 running on PeerB
app/
module/

function2 <- # renamed from function

In the above example, PeerA could make a request to PeerB to execute “app.module.function”. But that function
no longer exists as far as PeerB is concerned. The source code and functionality could be exactly the same, but
the logical location is different and therefore will fail.

app version 1 running on PeerA
app/
module/

function (tagged: "MyTaggedFunction")

app version 2 running on PeerB
app/
module/

function2 (tagged: "MyTaggedFunction")

8 Chapter 4. API Reference

net Documentation, Release 0.3.1

In the above example, we have tagged function and function2 with the same tag, “MyTaggedFunction”. Now
when PeerA requests to execute, it will request that PeerB executes “MyTaggedFunction” which is attached to
the new renamed function.

Standard no tagging

@net.connect()
def your_function(some_value):

return some_value

Custom tagging

@net.connect("MyTaggedFunction")
def your_function(some_value):

return some_value

net.subscribe(event, peers=None)
Subscribe to an event on another peer or set of peers. When the peer triggers an event using net.event, the
peer will take the arguments passed and forward them to this function. By default, this will subscribe to all
peers. You can also manually filter the peers by selectively passing in only the peers you want to subscribe to
using the peers keyword argument.

Subscribe to “some_event” on group1 peers only.

group1_peers = net.peers(groups=['group1'])

@net.subscribe("some_event", group1_peers)
def your_function(subscription_args, subscription_kwarg=None):

return some_value

Subscribe to “some_event” on a single peer.

peer = net.peers()[0]

@net.subscribe("some_event", peer)
def your_function(subscription_args, subscription_kwarg=None):

return some_value

Subscribe to “some_event” on all peers.

@net.subscribe("some_event")
def your_function(subscription_args, subscription_kwarg=None):

return some_value

net.flag(name)
Register a function as a flag handler for the peer server.

Parameters name – str

4.3 Functions

These functions are in place to help with discovering the network and interacting with other peers.

net.peers(refresh=False, groups=None)
Get a list of all peers on your network. This is a cached values since the call to graph the network can be long.

The initial call to this will hang for a few seconds. Under the hood, it is making a shell call to arp -a which
will walk your network and find all hosts.

4.3. Functions 9

net Documentation, Release 0.3.1

Standard call to get the peers on your network.

all_peers = net.peers()

Refresh all peers in the cache

all_peers = net.peers(refresh=True)

Refresh the cache with peers in group1

all_peers = net.peers("group1", refresh=True)

Parameters

• refresh – Bool

• groups – str

Returns

4.4 Defaults

These are prebuilt flags and handlers for helping get information about peers and the data flow between peers.

net.info(*args, **kwargs)
Return information about the peer requested.

friendly_information = net.info(peer='somepeer')

Returns peer.friendly_id

net.pass_through(*args, **kwargs)
Used for testing, takes your arguments and passes them back for type testing.

variable = "Test this comes back the way I sent it."

response = net.pass_through(variable, peer='somepeer')

Returns *args, **kwargs

4.5 Peer

Each instance of python will be assigned a Peer singleton. This is not a true singleton for development and testing
purposes. Although, for production, always access the peer using the net.Peer() call. The first thing to understand
is that net.Peer() is referring to the Peer running in the current instance of python. So, if you are writing a
connection and inside that connection you call net.Peer(). Depending on if that function is being run locally or
remotely will determine which peer you are being returned.

net.Peer(*args, **kwargs)
Running Peer server for this instance of python.

Returns net.peer._Peer

10 Chapter 4. API Reference

net Documentation, Release 0.3.1

class net.peer._Peer(launch=True, test=False, group=None)

CONNECTIONS = {b'bmV0LmRlZmF1bHRzLmhhbmRsZXJzLm51bGw=': <function null>, b'bmV0LmRlZmF1bHRzLmhhbmRsZXJzLmluZm8=': <function info>, b'bmV0LmRlZmF1bHRzLmhhbmRsZXJzLnBhc3NfdGhyb3VnaA==': <function pass_through>, b'bmV0LmRlZmF1bHRzLmhhbmRsZXJzLnN1YnNjcmlwdGlvbl9oYW5kbGVy': <function subscription_handler>}

SUBSCRIPTIONS = {}

FLAGS = {b'SU5WQUxJRF9DT05ORUNUSU9O': <function invalid_connection>, b'TlVMTA==': <function null_response>}

static decode(byte_string)
Decode a byte string sent from a peer.

Parameters byte_string – base64

Returns str

classmethod decode_id(id)
Decode a peer id

Parameters id – base64

Returns dict {‘group’: str, ‘host’: str, ‘port’: int }

classmethod encode(obj)
Encode an object for delivery.

Parameters obj – JSON compatible types

Returns str

friendly_id
Get the peers id in a friendly displayable way.

Returns str

static generate_id(port, host, group=None)
Generate a peers id.

Parameters

• port – int

• host – str

• group – str

Returns base64

classmethod get_flag(flag)
Get a flags id.

Parameters flag – str

Returns str

host
Host that the peer is running on.

Returns str

hub
Defines if this peer acts as the hub for communication through the network.

Returns bool

id
Get this peers id. This is tethered to the port and the executable path the peer was launched with. This is
base64 encoded for easier delivery.

4.5. Peer 11

net Documentation, Release 0.3.1

Returns base64

port
Port that the peer is running on.

Returns int

12 Chapter 4. API Reference

CHAPTER 5

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

5.1 Types of Contributions

5.1.1 Report Bugs

Report bugs at https://github.com/aldmbmtl/net/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

5.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

5.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

13

https://github.com/aldmbmtl/net/issues

net Documentation, Release 0.3.1

5.1.4 Write Documentation

net could always use more documentation, whether as part of the official net docs, in docstrings, or even on the web
in blog posts, articles, and such.

5.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/aldmbmtl/net/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

5.2 Get Started!

Ready to contribute? Here’s how to set up net for local development.

1. Fork the net repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/net.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv net
$ cd net/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 net tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

14 Chapter 5. Contributing

https://github.com/aldmbmtl/net/issues

net Documentation, Release 0.3.1

5.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check https://travis-ci.org/
aldmbmtl/net/pull_requests and make sure that the tests pass for all supported Python versions.

5.4 Tips

To run a subset of tests:

$ py.test tests.test_net

5.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

5.3. Pull Request Guidelines 15

https://travis-ci.org/aldmbmtl/net/pull_requests
https://travis-ci.org/aldmbmtl/net/pull_requests

net Documentation, Release 0.3.1

16 Chapter 5. Contributing

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

17

net Documentation, Release 0.3.1

18 Chapter 6. Indices and tables

Index

Symbols
_Peer (class in net.peer), 10

C
connect() (in module net), 8
CONNECTIONS (net.peer._Peer attribute), 11

D
decode() (net.peer._Peer static method), 11
decode_id() (net.peer._Peer class method), 11

E
encode() (net.peer._Peer class method), 11

F
flag() (in module net), 9
FLAGS (net.peer._Peer attribute), 11
friendly_id (net.peer._Peer attribute), 11

G
generate_id() (net.peer._Peer static method), 11
get_flag() (net.peer._Peer class method), 11

H
host (net.peer._Peer attribute), 11
hub (net.peer._Peer attribute), 11

I
id (net.peer._Peer attribute), 11
info() (in module net), 10

N
net.DEV (in module net), 8
net.GROUP (in module net), 7
net.IS_HUB (in module net), 8
net.PORT_RANGE (in module net), 7
net.PORT_START (in module net), 7
net.THREAD_LIMIT (in module net), 7

P
pass_through() (in module net), 10
Peer() (in module net), 10
peers() (in module net), 9
port (net.peer._Peer attribute), 12

S
subscribe() (in module net), 9
SUBSCRIPTIONS (net.peer._Peer attribute), 11

19

	app-net
	Basic Example

	Installation
	Stable release
	From sources

	Usage
	Core Concepts
	A Basic Example

	API Reference
	Environment
	Decorators
	Functions
	Defaults
	Peer

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips
	Deploying

	Indices and tables

