

Welcome to net’s documentation!

Contents:

	app-net
	Basic Example

	Installation
	Stable release

	From sources

	Usage
	Core Concepts

	A Basic Example

	API Reference
	Environment

	Decorators

	Functions

	Defaults

	Peer

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

Indices and tables

	Index

	Module Index

	Search Page

app-net

[image: _images/net.svg]
 [https://pypi.python.org/pypi/app-net][image: _images/net1.svg]
 [https://travis-ci.org/aldmbmtl/net][image: Documentation Status]
 [https://net.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/aldmbmtl/net/][image: Python 3]
 [https://pyup.io/repos/github/aldmbmtl/net/][image: MIT License]
 [https://github.com/Naereen/StrapDown.js/blob/master/LICENSE][image: PyLint]Pure python peer-to-peer interfacing framework. Define functions that can be executed from within the
running instance of python, just like a normal function. Or execute the same function on a remote peer
running either the same application or a compatible function and return the result as though it was run
locally.

Link to the Documentation [https://app-net.readthedocs.io/en/latest/?].

Basic Example

Below is a basic example of defining an application that is running on 2 separate hosts independently.
We will define a simple function that will take a positional argument and keyword argument then multiplies
them together and returns the result.

First we will define our function

import net

@net.connect
def my_function(some_arg, some_kwarg=5):
 return some_arg * some_kwarg

Now we can launch 2 instances of python. It can be either on the same or remote host, net handles this through peer ids.

>>> import net
>>> # run this function locally on this instance of python
>>> my_function(5, some_kwarg=10)
50
>>> # get all peers on the network
>>> for peer_id in net.get_peers():
... # execute the same function but on other instances of python and return the results
... print(my_function(5, some_kwarg=10, peer=peer_id))
...
50

Installation

Stable release

To install net, run this command in your terminal:

$ pip install app-net

This is the preferred method to install net, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for net can be downloaded from the Github repo [https://github.com/aldmbmtl/net].

You can either clone the public repository:

$ git clone git://github.com/aldmbmtl/net

Or download the tarball [https://github.com/aldmbmtl/net/tarball/master]:

$ curl -OL https://github.com/aldmbmtl/net/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

Core Concepts

app-net uses peer-to-peer socket servers to execute code both locally and remotely. The first
thing to understand is the difference between local and remote execution of a function.

Local

When you launch python and you execute a function, it will execute inside that instance, obviously.
app-net requires you the developer to define the peer id to execute the function on. If you don’t
tell the function where to execute the code, it will default to a normal pass-through. This makes
development and testing easier. The response locally is expected to match a remote peers response.

Remote

When you execute a function, you can tell it to connect to a different instance of python,
execute the code, and return the result through the socket response. The thing to understand is
that a remote instance doesn’t need to be on another host. Meaning, if you have 2 instances
of python running app-net on the same host, they can communicate the same way they would if they
were on a different host.

A Basic Example

Each connected function is registered using the functions func.__module__ and func.__name__
attributes and then encoded into base64 for easier transit between peers. This connection
identifier is called a “tag”. So, when Peer1 wants to execute a function on Peer2, it will send
a JSON request that has the args, kwargs and the tag. The tag is then used to find the function
in Peer2’s registry and then pass the args and kwargs to that function. If it succeeds, the
result is sent back to Peer1. If not, the traceback is captured and sent back and Peer1 will
throw a matching error.

We are going to write a very simple application that will multiply 2 values together.
Then we will flag this function as a “connect” function. Then we will launch 2 instances on our
local host, and trigger execution calls between the instances.

Firstly, we will define a our basic multiply function. Then we will flag it with the
net.connect decorator. This connect function will launch a net.Peer server and register
our multiply_values function with it.

import net

application code
@net.connect()
def multiply_values(val1, val2):
 return val1 * val2

>>> import net
>>>
>>> # get all net peers reachable on local host and the local area network.
>>> for peer_id in net.get_peers():
>>> #
>>> print(multiply_values(5, 10, peer=peer_id))
50
...

>>> import net
>>>
>>> # get all net peers reachable on local host and the local area network.
>>> for peer_id in net.get_peers():
>>> #
>>> print(multiply_values(5, 10, peer=peer_id))
50
...

API Reference

Environment

All of the following are environment variables that can be set to configure net.
Each variable is prefixed with “NET_{value}”.

Network Thread Limit

	
net.THREAD_LIMIT

	

Default: 5

For larger networks, you may want to increase the thread count. By default, this
is set to 5. When scanning the network for peers, the total number of hosts is
load balanced between the thread count you provide in this variable.

Port Configuration

	
net.PORT_START

	

Default: 3010

This is the starting port that the peers will attempt to bind to.

	
net.PORT_RANGE

	

Default: 5

This is the range of ports that you want the port to try to bind to. If the
default is 3010, net will scan 3010 - 3015 for a port.

Peer Configuration

	
net.GROUP

	

Default: None

You can group your peers together by defining the group it belongs to. This
helps Peers find compatible peers or collections.

	
net.IS_HUB

	

Default: False

If you have a single peer that should be the center of an application, you can
identify it through this variable. When you run net.info on a peer with this
flag, it will return True in the hub field of the friendly_id.

Development Configuration

	
net.DEV

	

Default: None

This will activate the DEBUG level for the net logger. This helps a ton if you
are having trouble tracking communication between peers.

Decorators

	
net.connect(tag=None)

	Registers a function as a connection. This will be tagged and registered
with the Peer server. The tag is a base64 encoded path to the function or
can be manually tagged with the tag parameter. Tagging a named function
allows you to interconnect functions between code bases.

For example, a connected function with no tag is tied to the
func.__module__ + func.__name__. This means the peers will only know
which functions are compatible based on the namespace staying the same.

app version 1 running on PeerA
app/
 module/
 function

app version 2 running on PeerB
app/
 module/
 function2 <- # renamed from function

In the above example, PeerA could make a request to PeerB to execute
“app.module.function”. But that function no longer exists as far as PeerB is
concerned. The source code and functionality could be exactly the same, but
the logical location is different and therefore will fail.

app version 1 running on PeerA
app/
 module/
 function (tagged: "MyTaggedFunction")

app version 2 running on PeerB
app/
 module/
 function2 (tagged: "MyTaggedFunction")

In the above example, we have tagged function and function2 with the same
tag, “MyTaggedFunction”. Now when PeerA requests to execute, it will request
that PeerB executes “MyTaggedFunction” which is attached to the new renamed
function.

Standard no tagging

@net.connect()
def your_function(some_value):
 return some_value

Custom tagging

@net.connect("MyTaggedFunction")
def your_function(some_value):
 return some_value

	
net.subscribe(event, peers=None)

	Subscribe to an event on another peer or set of peers. When the peer
triggers an event using net.event, the peer will take the arguments
passed and forward them to this function. By default, this will subscribe to
all peers. You can also manually filter the peers by selectively passing in
only the peers you want to subscribe to using the peers keyword argument.

Subscribe to “some_event” on group1 peers only.

group1_peers = net.peers(groups=['group1'])

@net.subscribe("some_event", group1_peers)
def your_function(subscription_args, subscription_kwarg=None):
 return some_value

Subscribe to “some_event” on a single peer.

peer = net.peers()[0]

@net.subscribe("some_event", peer)
def your_function(subscription_args, subscription_kwarg=None):
 return some_value

Subscribe to “some_event” on all peers.

@net.subscribe("some_event")
def your_function(subscription_args, subscription_kwarg=None):
 return some_value

	
net.flag(name)

	Register a function as a flag handler for the peer server.

	Parameters

	name – str

Functions

These functions are in place to help with discovering the network and
interacting with other peers.

	
net.peers(refresh=False, groups=None)

	Get a list of all peers on your network. This is a cached values since the
call to graph the network can be long.

The initial call to this will hang for a few seconds. Under the hood, it is
making a shell call to arp -a which will walk your network and find all
hosts.

Standard call to get the peers on your network.

all_peers = net.peers()

Refresh all peers in the cache

all_peers = net.peers(refresh=True)

Refresh the cache with peers in group1

all_peers = net.peers("group1", refresh=True)

	Parameters

	
	refresh – Bool

	groups – str

	Returns

	

Defaults

These are prebuilt flags and handlers for helping get information about peers
and the data flow between peers.

	
net.info(*args, **kwargs)

	Return information about the peer requested.

friendly_information = net.info(peer='somepeer')

	Returns

	peer.friendly_id

	
net.pass_through(*args, **kwargs)

	Used for testing, takes your arguments and passes them back for type
testing.

variable = "Test this comes back the way I sent it."

response = net.pass_through(variable, peer='somepeer')

	Returns

	*args, **kwargs

Peer

Each instance of python will be assigned a Peer singleton. This is not a true
singleton for development and testing purposes. Although, for production, always
access the peer using the net.Peer() call. The first thing to understand is
that net.Peer() is referring to the Peer running in the current instance of
python. So, if you are writing a connection and inside that connection you call
net.Peer(). Depending on if that function is being run locally or remotely
will determine which peer you are being returned.

	
net.Peer(*args, **kwargs)

	Running Peer server for this instance of python.

	Returns

	net.peer._Peer

	
class net.peer._Peer(launch=True, test=False, group=None)

	
	
CONNECTIONS = {b'bmV0LmRlZmF1bHRzLmhhbmRsZXJzLm51bGw=': <function null>, b'bmV0LmRlZmF1bHRzLmhhbmRsZXJzLmluZm8=': <function info>, b'bmV0LmRlZmF1bHRzLmhhbmRsZXJzLnBhc3NfdGhyb3VnaA==': <function pass_through>, b'bmV0LmRlZmF1bHRzLmhhbmRsZXJzLnN1YnNjcmlwdGlvbl9oYW5kbGVy': <function subscription_handler>}

	

	
SUBSCRIPTIONS = {}

	

	
FLAGS = {b'SU5WQUxJRF9DT05ORUNUSU9O': <function invalid_connection>, b'TlVMTA==': <function null_response>}

	

	
static decode(byte_string)

	Decode a byte string sent from a peer.

	Parameters

	byte_string – base64

	Returns

	str

	
classmethod decode_id(id)

	Decode a peer id

	Parameters

	id – base64

	Returns

	dict {‘group’: str, ‘host’: str, ‘port’: int }

	
classmethod encode(obj)

	Encode an object for delivery.

	Parameters

	obj – JSON compatible types

	Returns

	str

	
friendly_id

	Get the peers id in a friendly displayable way.

	Returns

	str

	
static generate_id(port, host, group=None)

	Generate a peers id.

	Parameters

	
	port – int

	host – str

	group – str

	Returns

	base64

	
classmethod get_flag(flag)

	Get a flags id.

	Parameters

	flag – str

	Returns

	str

	
host

	Host that the peer is running on.

	Returns

	str

	
hub

	Defines if this peer acts as the hub for communication through the
network.

	Returns

	bool

	
id

	Get this peers id. This is tethered to the port and the executable path
the peer was launched with. This is base64 encoded for easier delivery.

	Returns

	base64

	
port

	Port that the peer is running on.

	Returns

	int

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/aldmbmtl/net/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

net could always use more documentation, whether as part of the
official net docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/aldmbmtl/net/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up net for local development.

	Fork the net repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/net.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv net
$ cd net/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 net tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check
https://travis-ci.org/aldmbmtl/net/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_net

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Index

 _
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | N
 | P
 | S

_

 	
 	_Peer (class in net.peer)

C

 	
 	connect() (in module net)

 	
 	CONNECTIONS (net.peer._Peer attribute)

D

 	
 	decode() (net.peer._Peer static method)

 	
 	decode_id() (net.peer._Peer class method)

E

 	
 	encode() (net.peer._Peer class method)

F

 	
 	flag() (in module net)

 	
 	FLAGS (net.peer._Peer attribute)

 	friendly_id (net.peer._Peer attribute)

G

 	
 	generate_id() (net.peer._Peer static method)

 	
 	get_flag() (net.peer._Peer class method)

H

 	
 	host (net.peer._Peer attribute)

 	
 	hub (net.peer._Peer attribute)

I

 	
 	id (net.peer._Peer attribute)

 	
 	info() (in module net)

N

 	
 	net.DEV (in module net)

 	net.GROUP (in module net)

 	net.IS_HUB (in module net)

 	
 	net.PORT_RANGE (in module net)

 	net.PORT_START (in module net)

 	net.THREAD_LIMIT (in module net)

P

 	
 	pass_through() (in module net)

 	Peer() (in module net)

 	
 	peers() (in module net)

 	port (net.peer._Peer attribute)

S

 	
 	subscribe() (in module net)

 	
 	SUBSCRIPTIONS (net.peer._Peer attribute)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to net’s documentation!

 		
 app-net

 		
 Basic Example

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Core Concepts

 		
 Local

 		
 Remote

 		
 A Basic Example

 		
 API Reference

 		
 Environment

 		
 Network Thread Limit

 		
 Port Configuration

 		
 Peer Configuration

 		
 Development Configuration

 		
 Decorators

 		
 Functions

 		
 Defaults

 		
 Peer

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

